
ORIGINAL RESEARCH
published: 03 February 2021

doi: 10.3389/fnagi.2021.593898

Frontiers in Aging Neuroscience | www.frontiersin.org 1 February 2021 | Volume 13 | Article 593898

Edited by:

Jiehui Jiang,

Shanghai University, China

Reviewed by:

Roberta Lizio,

Institute of Research and Medical

Care (IRCCS) SDN, Italy

Zhen Yuan,

University of Macau, China

*Correspondence:

Yingchun Zhang

yzhang94@uh.edu

Received: 11 August 2020

Accepted: 13 January 2021

Published: 03 February 2021

Citation:

Wu Z, Peng Y, Hong M and Zhang Y

(2021) Gray Matter Deterioration

Pattern During Alzheimer’s Disease

Progression: A Regions-of-Interest

Based Surface Morphometry Study.

Front. Aging Neurosci. 13:593898.

doi: 10.3389/fnagi.2021.593898

Gray Matter Deterioration Pattern
During Alzheimer’s Disease
Progression: A Regions-of-Interest
Based Surface Morphometry Study
Zhanxiong Wu 1,2, Yun Peng 2, Ming Hong 1 and Yingchun Zhang 2*

1 School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China, 2Department of Biomedical Engineering,

University of Houston, Houston, TX, United States

Accurate detection of the regions of Alzheimer’s disease (AD) lesions is critical for early

intervention to effectively slow down the progression of the disease. Although gray

matter volumetric abnormalities are commonly detected in patients with mild cognition

impairment (MCI) and patients with AD, the gray matter surface-based deterioration

pattern associated with the progression of the disease from MCI to AD stages is largely

unknown. To identify group differences in gray matter surface morphometry, including

cortical thickness, the gyrification index (GI), and the sulcus depth, 80 subjects from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were split into healthy

controls (HCs; N = 20), early MCIs (EMCI; N = 20), late MCIs (LMCI; N = 20), and

ADs (N = 20). Regions-of-interest (ROI)-based surface morphometry was subsequently

studied and compared across the four stage groups to characterize the gray matter

deterioration during AD progression. Co-alteration patterns (Spearman’s correlation

coefficient) across the whole brain were also examined. Results showed that patients

with MCI and AD exhibited a significant reduction in cortical thickness (p < 0.001) mainly

in the cingulate region (four subregions) and in the temporal (thirteen subregions), parietal

(five subregions), and frontal (six subregions) lobes compared to HCs. The sulcus depth

of the eight temporal, four frontal, four occipital, and eight parietal subregions were also

significantly affected (p < 0.001) by the progression of AD. The GI was shown to be

insensitive to AD progression (only three subregions were detected with a significant

difference, p < 0.001). Moreover, Spearman’s correlation analysis confirmed that the

co-alteration pattern of the cortical thickness and sulcus depth indices is predominant

during AD progression. The findings highlight the relevance between gray matter surface

morphometry and the stages of AD, laying the foundation for in vivo tracking of AD

progression. The co-alteration pattern of surface-based morphometry would improve

the researchers’ knowledge of the underlying pathologic mechanisms in AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder and
the most common cause of dementia, which presumably starts
with the aggregation of amyloid beta (Dicks et al., 2019). Gray
matter volume reductions, a prominent AD feature because of
neuronal loss, are considered as a close biological substrate of
decline in cognitive functions. The decreases in gray matter
volume can be measured by MRI. Studies have indicated gray
matter abnormalities in patients with AD (Karas et al., 2004).
Compared with healthy controls (HCs), patients with AD showed
significantly lower global gray matter volume, lower whole brain
volume, and greater ventricles (Guo et al., 2010). As the disease
advances, gray matter abnormalities start to spread from the
bilateral hippocampus, the amygdala, the entorhinal cortex, the
posterior cingulate gyrus, and the medial thalamus to the parietal
and frontal lobes (Moller et al., 2013). The symptomatic pre-
dementia stage of AD, most commonly referred to as mild
cognitive impairment (MCI), is critical to the development of
predictive methods for early detection of AD and for further
intervention programs (Li et al., 2018; Li K. et al., 2019; Ottoy
et al., 2019;Wee et al., 2019). Differentmachine learningmethods
have been proposed to discriminate MCIs from HCs and ADs,
based on the features extracted from structural MRI (Dimitriadis
et al., 2017; Gomez-Sancho et al., 2018; Hojjati et al., 2018;
Liu et al., 2020). Furthermore, recent evidence (Dicks et al.,
2018; Tijms et al., 2018; Li R. et al., 2019; Wang et al., 2020)
suggest that neuronal alterations in brain disorders tend to
form patterns that resemble those of cerebral connectivity (co-
alteration patterns). Therefore, to monitor disease progression,
powerful non-invasive biomarkers, such as graymatter diffusivity
(Jacobs et al., 2013) and gray matter volume (Lee et al., 2016;
Qian et al., 2019), as well as their co-alteration patterns across
the whole brain, are necessary to identify AD at early MCI
stage and to advance the diagnosis, treatment, and prevention of
these disorders.

Voxel-based morphometry (VBM) has been frequently used
to examine gray matter differences across the whole brain.
Using VBM, gray and white matter volume reductions were
simultaneously detected between HCs and ADs (Baxter et al.,
2006; Guo et al., 2010; Ha et al., 2012; Beejesh et al., 2019). An
AD progression model was proposed to provide anatomically
specific predictions of disease spread over time with VBM
(Phillips et al., 2018). Dicks et al. (2019) modeled the gray
matter atrophy in AD as a function of time and aging using
Mini-Mental State Examination (MMSE) and found that the
association of atrophy with MMSE was weaker than those with
time or age. Based on VBM, local gray matter volumes were
compared between patients with late- and early-onset AD and
older and younger control subjects (Moller et al., 2013, Wu et al.,
2020), and interactions of age and diagnosis on the volumes of
the hippocampus and the precuneus were assessed, suggesting
that the patterns of atrophy might vary in the spectrum of AD
(Moller et al., 2013). Besides gray matter volume, revealing cross
effects between AD-related incipient lesions helps to understand
the progression to AD from MCI. Machine learning models
were trained on VBM and connectome estimates to detect

accurately AD-related neurodegeneration across the whole brain
in a data-drivenmanner (Wang et al., 2019). Association between
regional gray matter volume and two subtypes of psychotic
symptoms in patients with mild AD was investigated, showing
a distinct neural correlation between the paranoid and the non-
psychosis groups (Lee et al., 2016). With the VBM technique,
Cauda et al. (2018) found that structural alterations in the gray
matter tended to follow the network-like patterns, indicating
that structural co-alterations were influenced by connectivity
constraints rather than being randomly distributed. Manuello
et al. (2017) have investigated gray matter co-alterations of AD
and found a series of co-altered areas that include the left
hippocampus, left and right amygdalae, right parahippocampal
gyrus, and right temporal inferior gyrus. Based on VBM, these
studies consistently showed a widespread gray matter co-atrophy
pattern due to AD. The co-alteration pattern may accelerate the
development of neuronal abnormalities.

Unlike VBM, the surface-based morphometry methods can
measure the cortical thickness and folding patterns, as well as
the shape or curvature measures derived from brain surface
meshes (Gutman et al., 2009; Lui et al., 2010). Previous studies
demonstrated an increased accuracy of brain registration using
brain surface meshes for spatial registration, compared to
volume-based registration (Desai et al., 2005). Brain surface
meshes permit new forms of analyses, such as the GI and the
sulcus index, which measure surface complexity in 3D (Yotter
et al., 2011) or cortical thickness (Righart et al., 2017). In
addition, inflation or spherical mapping of the cortical surface
mesh raises the buried sulci to the surface so that the mapped
functional activity in these regions can be made visible. However,
few studies have attempted to monitor gray matter alterations
associated with MCIs and ADs using regions-of-interest (ROI)-
based surface morphometry based on brain surface meshing.
In this study, we investigated ROI-based surface morphometry
of gray matter in different stages of AD, including HC, EMCI,
LMCI, and AD, aiming to identify characteristic gray matter
alteration patterns in terms of cortical thickness, GI, and the
sulcus depth during AD progression.

METHODS AND MATERIALS

Subjects
Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni.
loni.usc.edu). The ADNI was initially launched in 2004. The
primary goal of ADNI is to identify MRI, PET, biomarkers, and
genetic characteristics that would support the early detection and
tracking of AD and improve the clinical trial design (Risacher
et al., 2009; Jack et al., 2010a; Petersen et al., 2010). Scans were
acquired with a 3.0-T head-only Siemens Medical Solutions MRI
scanner (Erlangen, Germany). T1-weighted imaging parameters
were: repetition time = 2,250ms, echo time = 2.6ms, flip angle
= 9, field of view = 256 × 256mm, acquisition matrix = 256 ×
256, voxel size = 1mm isotropic, and number of slices = 192.
The demographic data of the subjects are summarized in Table 1.
The flowchart of the ROI-based surface morphometry analysis is
shown in Figure 1.
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TABLE 1 | Demographics of healthy controls (HCs), mild cognition impairments (MCIs), and Alzheimer’s disease (ADs).

HC Early MCIs (EMCI) Late MCIs (LMCI) AD

Number of subjects 20 20 20 20

Gender 12F:8M 8F:12M 9F:11M 11F:9M

Mean age (Std) 73.75 (4.78) 75.95 (7.12) 74.35 (5.72) 74.85 (8.27)

CDR 0 0.5 0.5 0.5–1

MMSE 24–30 24–30 24–30 20–26

FIGURE 1 | Flowchart of the regions-of-interest (ROI)-based surface morphometry analysis. After brain extraction and segmentation (white matter, gray matter, and

cerebrospinal fluid), spatial normalization was performed to correct the orientation and the size of the brain. Then, the surface of gray matter was resampled and

smoothed. The ROI-based surface parameters were extracted according to the DKT40 parcellation atlas. Cortical thickness, gyrification index (GI), and sulcus depth

were used to characterize the deterioration patterns of gray matter during Alzheimer’s disease (AD) progression.

Regions-of-Interest-Based Surface
Morphometry
T1-weighted MR image preprocessing was performed using
automated procedures included in the Computational
Anatomical Toolbox (CAT12), an extension to the Statistical
Parametric Mapping (SPM12) package (http://www.neuro.uni-
jena.de/cat/). First, T1-weighted images were preprocessed with
intensity normalization and skull stripping, followed by the
normalization of the head position along the commissural axis
and the labeling of the cortical and subcortical regions. Second,
the images were segmented into gray matter, white matter,
and cerebrospinal fluid with the parameter of Markov random
fields set to 2, and co-registered to a probabilistic brain atlas
with non-linear morphing. According to the probability that a
given location is of a particular tissue class (gray matter, white
matter, and cerebrospinal fluid), the intensity of the image at
the location, and the local spatial configuration of the location
related to the labels, each MRI voxel was assigned to one specific
tissue class (Dahnke et al., 2013). In this process, all T1-weighted
images were spatially normalized using combinations of affine
linear transformation and non-linear registration to the standard

Montreal Neurological Institute (MNI) template and segmented
into gray matter, white matter, and cerebrospinal fluid. Third,
a DKT40 labeling atlas was warped from standard space to
subject space using the subject-specific inversed normalization
parameters. All results were estimated in the native space
before spatial normalization. Last, an individual brain atlas that
consisted of 68 different gray matter areas was created for each
participant according to the DKT40 parcellation atlas, as shown
in Figure 2. The names and the corresponding indices of the
parcellated regions are reported in Table 2. The pipeline used
topology correction and spherical mapping to handle the partial
volume effect, sulcal blurring, and asymmetry (Righart et al.,
2017).

In this study, three ROI-based surface morphometry
parameters were used to characterize the deterioration pattern
of gray matter, including cortical thickness, the GI, and the
sulcus depth:

Cortical Thickness
It is defined as the distance between the inner and the outer
surface estimated from brain surface meshes, was related to
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FIGURE 2 | Visualization of the DKT40 cortical parcellation atlas, comprising 68 local regions. (A) Top view, (B) Bottom view, (C) Right view, and (D) Left view.

TABLE 2 | Names and indices of the DKT40 parcellated cortical regions.

Region Region Region Region

1 bankssts_left 2 bankssts_right 3 caudalanteriorcingulate_left 4 caudalanteriorcingulate_right

5 caudalmiddlefrontal_left 6 caudalmiddlefrontal_right 7 cuneus_left 8 cuneus_right

9 entorhinal_left 10 entorhinal_right 11 fusiform_left 12 fusiform_right

13 inferiorparietal_left 14 inferiorparietal_right 15 inferiortemporal_left 16 inferiortemporal_right

17 isthmuscingulate_left 18 isthmuscingulate_right 19 lateraloccipital_left 20 lateraloccipital_right

21 lateralorbitofrontal_left 22 lateralorbitofrontal_right 23 lingual_left 24 lingual_right

25 medialorbitofrontal_left 26 medialorbitofrontal_right 27 middletemporal_left 28 middletemporal_right

29 parahippocampal_left 30 parahippocampal_right 31 paracentral_left 32 paracentral_right

33 parsopercularis_left 34 parsopercularis_right 35 parsorbitalis_left 36 parsorbitalis_right

37 parstriangularis_left 38 parstriangularis_right 39 pericalcarine_left 40 pericalcarine_right

41 postcentral_left 42 postcentral_right 43 posteriorcingulate_left 44 posteriorcingulate_right

45 precentral_left 46 precentral_right 47 precuneus_left 48 precuneus_right

49 rostralanteriorcingulate_left 50 rostralanteriorcingulate_right 51 rostralmiddlefrontal_left 52 rostralmiddlefrontal_right

53 superiorfrontal_left 54 superiorfrontal_right 55 superiorparietal_left 56 superiorparietal_right

57 superiortemporal_left 58 superiortemporal_right 59 supramarginal_left 60 supramarginal_right

61 frontalpole_left 62 frontalpole_right 63 temporalpole_left 64 temporalpole_right

65 transversetemporal_left 66 transversetemporal_right 67 insula_left 68 insula_right

cortical development (Dahnke et al., 2013), and identified as
an important biomarker for normal development and aging
(Sowell et al., 2004, 2007; Fjell et al., 2006) and pathological
changes such as AD (Kuperberg et al., 2003; Sailer et al.,
2003; Thompson et al., 2004; Rosas et al., 2008). Here, brain
tissue segmentation was used to estimate the white matter
distance and to project the local maxima (which is equal to
the cortical thickness) onto other gray matter voxels using
a neighboring relationship described by the white matter
distance. This projection-based thickness allowed the handling
of partial volume information, sulcal blurring, and sulcal
asymmetries without explicit sulcus reconstruction (Dahnke
et al., 2013).

Gyrification Index
It is defined as the ratio of the inner surface size to the outer
surface size of an outer (usually convex) hull and was computed

by averaging the absolute curvature values from each vertex of
the spherical surface mesh (Luders et al., 2006).

Sulcus Depth
It is extracted based on the Euclidean distance between the
central surface and its convex hull. Transformation with square
root is used to render the data more normally distributed.

These surface parameters were estimated using the CAT
toolbox (designed by Structural Brain Mapping Group,
Departments of Psychiatry and Neurology, Jena University
Hospital, Germany), which uses an internal interpolation to
provide more reliable results even with low-resolution images
and anisotropic spatial resolutions. Although interpolation
cannot add more details to the images, the computations would
benefit from the higher number of voxels, and the strip artifacts
in preprocessed images are greatly reduced. While cortical
thickness was estimated from the surface smoothed to 15mm
of full width at half maximum Gaussian kernel, GI and sulcus
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FIGURE 3 | Whole-brain mapping of surface thickness, gyrification index (GI), and sulcus depth maps estimated using CAT12 toolbox. From left to right, each column

represents a subject in control, early mild cognitive impairment (EMCI), late MCI (LMCI), and AD groups, respectively.

depth were computed from the surface smoothed with 20mm
full width at half maximum (Dahnke et al., 2013).

Statistical Analysis
For each region (total 68 regions in DKT40 atlas), the gender
covariate was first regressed out. Group-wise differences in
cortical thickness, the GI, and the sulcus depth were assessed
using the Kruskal–Wallis test. To additionally characterize the
structural co-alterations in the evolution of AD, the Spearman’s
correlation analysis was used to investigate whether the alteration
of a brain area was associated with the alteration of other
brain areas. Statistical analyses were performed in MATLAB.
For all analyses, significance was set at the value of p < 0.001
(uncorrected). Effect sizes for the Kruskal–Wallis tests can be
defined as the chi-squared statistic divided by (N − 1).

η
2
=

χ
2

N − 1
(1)

where χ
2 is chi-squared statistic and N is sample size.

RESULTS

Figure 3 demonstrated whole-brain mapping of cortical
thickness, the GI, and the sulcus depth, where, from left to right,

each column represents a subject in HC, EMCI, LMCI, and AD
groups. Overall, across the four groups, the distributions of these
parameters exhibited similarities. The greatest local cortical
thickness appeared to be located in the left and right parietal
lobes. The highest local gyrification was located in the frontal
lobe, as well as in the occipital lobe, while the lowest GI in the left
and right hemispheres appears surrounding the superior parietal
gyrus and expanding into the inferior temporal gyrus. The least
sulcus depth was detected in the elongated regions along the
longitudinal fissure between the left and right hemispheres. As
demonstrated in Figure 3, there were some differences in these
surface complexity parameters across these groups, especially
in cortical thickness (first row in Figure 3). Subsequently, the
Kruskal–Wallis and Spearman’s correlation tests were used
to assess regional differences in these surface morphometry
parameters across the groups.

Figures 4–6 show the nodal distribution (mean ± SD) of
cortical thickness, GI, and sulcus depth for each group. After
the ROI-based surface complexity was estimated according to
the DKT40 atlas, the Kruskal–Wallis test was repeated for 68
regions and the regions that could be significantly identified
across four groups were provided in Table 3. As reported in this
table, statistically significant differences (p < 0.001, uncorrected)
in the regions, namely temporal lobe: 1, 9, 10, 11, 15, 16, 27, 28,
57, 58, 63, 64, and 67; frontal lobe: 22, 26, 33, 34, 51, and 52;
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FIGURE 4 | Comparison of cortical thickness across HC, EMCI, LMCI, and AD groups. (A) The nodal distribution (mean ± SD) of cortical thickness for each group.

(B) The Kruskal–Wallis test was performed, and ROIs that exhibit significant difference across four groups were listed. The value of p of the Kruskal–Wallis test is

reported in Table 3. Region indexes refer to Table 2. Red crosses denote outliers.
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FIGURE 5 | Comparison of the GI across HC, EMCI, LMCI, and AD groups. (A) The nodal distribution (mean ± SD) of the GI for each group. (B) The Kruskal–Wallis

test was performed, and ROIs that exhibit significant difference across four groups were listed. The value of p of the Kruskal–Wallis test is reported in Table 3. Region

indexes refer to Table 2. Red crosses denote outliers.

parietal lobe: 13, 14, 48, 59, and 60; and cingulate: 17, 18, 43, 44,
were found in cortical thickness. A significant difference in the GI
(p< 0.001, uncorrected) was found only in three regions, namely
22, 23, and 67. Significant sulcus depth reductions (p < 0.001,
uncorrected) over AD progression were revealed, which mainly
occurred in the local regions, namely temporal lobe: 2, 12, 16, 58,
65, 66, 67, and 68; frontal lobe: 5, 6, 26, and 33; parietal lobe: 13,
14, 41, 45, 46, 55, 56, and 59; occipital lobe: 8, 19, 20, and 24; and
cingulate: 18 and 30.

To reveal gray matter changes occurring simultaneously
in different gray matter subregions, we characterized co-
alteration patterns of ROI-based surface morphometry during
the evolution of AD with the Spearman’s correlation analysis.
Given the nodes previously designed according to the DKT40
atlas, the co-alteration matrices were constructed for cortical
thickness, GI, and sulcus depth. Figure 7A shows the Spearman’s
correlation matrices between 68 local regions in terms of cortical
thickness, GI, and sulcus depth. The matrices were binarized,
and the value of +1 indicates a perfect positive correlation,
i.e., the related subregions share the same decreased trend in

the surface morphometric metrics. The corresponding binary
networks were also illustrated in Figure 7B. Interestingly, the
three co-alteration networks are different. The node degree is the
number of connections that the node has with the other nodes,
and it was computed to evaluate co-alteration patterns of the
surface morphometric metrics over AD progression (Figure 7C).
In the co-alteration network of cortical thickness, we can find
that the degrees of 26 nodes (see Figure 7C) are 25. In the sulcus
depth network, the degrees of 23 nodes (see Figure 7C) are >20.
However, for the gyrification network, the node degrees are much
smaller (see Figure 7C). In accordance with the Kruskal–Wallis
test, the metrics of cortical thickness and the sulcus depth are
more sensitive and specific in distinguishing MCIs and ADs
from HCs.

DISCUSSION

Alzheimer’s disease is a progressive neurodegenerative disease
characterized by a decline in memory processing and cognitive
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FIGURE 6 | Comparison of the sulcus depth across HC, EMCI, LMCI, and AD groups. (A) The nodal distribution (mean ± SD) of the sulcus depth for each group. (B)

The Kruskal–Wallis test was performed, and ROIs that exhibit significant difference across four groups were listed. The value of p of the Kruskal–Wallis test is reported

in Table 3. Region indexes refer to Table 2. Red crosses denote outliers.
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function. Gray matter atrophy is considered as a close biological
substrate of decline in cognitive functioning (Jack et al., 2010b).
In this study, with ROI-based surface morphometry analyses
based on brain surface meshes, gray matter alterations over
AD progression were investigated. Besides cortical thickness,
surface complexity (GI and sulcus depth) was estimated at a local
scale, revealing a global reduction in the sulcus depth of the
MCI and AD groups. The main findings of this study provide
a novel perspective for understanding the pathophysiological
mechanisms underlying AD and could potentially enhance the
accuracy in the early detection and intervention of AD.

A clear deterioration pattern of gray matter over AD
progression was shown with the Kruskal–Wallis test. Cortical
thickness and sulcus depth were more pronounced during
AD progression (Figures 4, 6), and the GI was found to be
significantly different only in three local regions (22, 23, 67)
(Figure 5). This finding is broadly consistent with the findings
in previous studies. Patients with ADmainly exhibited significant
gray matter volume reductions in the hippocampus, the temporal
lobes, the precuneus, the cingulate gyrus, the insula, and the
inferior frontal cortex (Guo et al., 2010; Moller et al., 2013; Lee
et al., 2016; Dicks et al., 2019). Our findings also confirmed
that the brain regions exhibiting high topological centrality,
considered as brain hubs, are more likely to be affected by
AD processes, as they are located at the center of important
functional networks (Cauda et al., 2018). As reported in Table 3,
areas showing significant statistical decreases include insulae
(67 and 68); cingulate cortices (17, 18, 43, and 44); inferior,
superior, and middle temporal gyri (15, 16, 27, 28, 57, and 58);
middle and inferior frontal (22, 26, 33, 34, 51, and 52); pre-
and postcentral gyri (13, 14, 41, 45, 46, 55, and 56). Disruption
in these hub regions could impede communication between
distinct gray matter regions, resulting in impaired cognitive
functioning and the rapid development of AD abnormalities
from MCI.

Evidence suggests that pathological alteration occurs long
before the onset of clinical AD symptoms due to the toxic effects
of amyloid-beta plaques (Chetelat et al., 2010; Johnson et al.,
2014; Juan et al., 2015). In previous studies, cortical thickness
changes were found to be circumscribed to the left hemisphere
in patients with MCI and patients with AD using either VBM
(Chetelat et al., 2002; Karas et al., 2003; Thompson et al., 2003)
or the surface-based cortical thickness analysis (Lerch et al., 2005;
Vivek et al., 2006). Specifically, longitudinal studies showed that
the left gray matter loss of medial temporoparietal regions was
strongly correlated with worse cognitive performance and that
faster leftward reduction of gray matter loss was uncovered in
patients with AD (Thompson et al., 2003). Our results indicated
that eight regions in the left temporal lobe (1, 9, 11, 15, 27,
57, 63, and 67) and five regions in the right temporal lobe
(10, 16, 28, 58, and 64) displayed a significant reduction in
cortical thickness, supporting the hypothesis that AD-related
cortical thickness reduction predominantly occurs in the left
hemisphere. However, this spatial deterioration distribution was
not observed in the parietal lobe (left: 13 and 59; right: 14,
48, and 60), the frontal lobe (left: 33 and 51; right: 22, 26,
34, and 52), and the cingulate region (left: 17 and 43; right:

TABLE 3 | The Kruskal–Wallis test on cortical thickness, GI, and sulcus depth

across healthy controls (HC), early mild cognitive impairment (EMCI), late MCI

(LMCI), and AD groups.

Region index

Cortical thickness 1, 9, 10, 11, 13, 14, 15, 16, 17, 18, 22, 26, 27, 28, 33, 34,

43, 44, 48, 51, 52, 57, 58, 59, 60, 63, 64, 67

Gyrification 22, 23, 67

Sulcus depth 2, 5, 6, 8, 12, 13, 14, 16, 18, 19, 20, 24, 26, 30, 33, 41, 45,

46, 55, 56, 58, 59, 65, 66, 67, 68

The regions associated with p < 0.001 (uncorrected) were provided.

18 and 44). Additionally, in the statistical analysis of sulcus
depth, we found that five regions in the left parietal lobe
(13, 41, 45, 55, and 59) and three regions (14, 46, and 56)
in the right parietal lobe exhibited significant reduction. As
the spatial deterioration patterns of MCI and AD may be
individually different, a larger sample is needed for testing in the
next step.

The pathological brains of patients with MCI and patients
with AD are also characterized by structural co-alterations in
the gray matter, which tend to follow identifiable network-
like patterns (Cauda et al., 2018). The co-alteration patterns of
surface morphometry parameters indicated the synchronization
of gray matter deterioration between distinct gray matter parcels.
Studies have revealed that gray matter co-alteration patterns of
patients with MCI and patients with AD have a less optimal
topological organization characterized by increased segregation
and decreased integration (Yong et al., 2008; Tijms et al.,
2013; Romerogarcia et al., 2016). By considering the cortical
co-alteration pattern as a graph and by studying its edge
strength (Spearman’s correlation) features at the network level,
the cross effects between AD-related incipient lesions may be
disclosed. In this study, correlated changes in cortical thickness,
GI, and sulcus depth were used to assess the correlation
strength across the whole brain and to investigate temporal
differences in cross-cortical correlations between groups. Our
results provide evidence that alterations of gray matter thickness
and sulcus depth are network-like distributed (Figure 7B). This
co-alteration exhibits a topological structure and includes some
pathological regions that have been thought to be important
functional hubs of the brain. As shown in Figure 7C, the degree
of these local regions (Table 3) estimated from the cortical
thickness correlation matrix was between 18 and 25, except
region 48 (precuneus_right), and the degree extracted from
the sulcus depth correlation coefficient was between 8 and
22, except 8 (cuneus_right), 14 (inferiorparietal_right), and 19
(lateraloccipital_left). The finding confirms that the primary
deterioration in some atrophic regions might lead to a secondary
deterioration in other connected areas. The co-alteration patterns
of brain atrophy caused by AD appeared to considerably
resemble the patterns of brain structural connections (Cauda
et al., 2018). However, from the gray matter co-alteration
analyses, we still cannot identify the causal relationship between
the altered gray matter parcels. It may be a chance to reveal
neuropathological co-alterations patterns in patients with MCI
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FIGURE 7 | Surface morphometric co-alteration patterns among different cortical subregions. For cortical subregion indices, please refer to Table 2. (A) Binarized

Spearman’s correlation matrices estimated from the ROI-based surface morphometric metrics, including cortical thickness, GI, and sulcus depth. The correlation

matrices were thresholded at the value of 1. The value of 1 indicates that the related subregions share the same decreased trend in surface morphometry (B) Binary

networks correspond to the Spearman’s correlation matrices in (A). (C) Degree of each cortical subregion estimated from (A).

and patients with AD, with a combination of functional and
anatomic connectivity estimation.

A novel aspect of this study is the assessment of the
ROI-based surface morphometric alteration across HC, EMCI,
LMCI, and AD groups. The findings are basically in line
with the literature showing the associations of gray matter
volume morphometry with MCIs and ADs. This might suggest

a greater sensitivity of surface estimates in detecting MCI-
and AD-related neurodegeneration compared with gray matter
voxel-based morphometry. However, the results in this study
have several limitations to be interpreted with caution. First,
this study was limited by a relatively small sample size.
Although we were able to detect effects with this sample size,
a larger sample would be optimal for surface morphometry
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analysis. Second, there is an increased risk for false-positive
results because we used uncorrected (p < 0.001) thresholds
for surface morphometry analysis due to our sample size.
Third, brain parcellation may influence the characterization of
surface morphometry during AD progression (Messe, 2019; Wu
et al., 2019), which deserves further study. Last, the education
information of participants and neuropsychological markers are
not available in the ADNI database, so they have not been
taken into account in the statistical analysis in this study.
Despite these limitations, to our knowledge, this is the first
report to show the association of brain regional gray matter
surface complexity with AD progression. Further, multimodal
neuroimaging studies are needed to investigate associations
between regional structural brain atrophy and cognition declines
in patients with AD. More rigorous methods to combine
multimodal MRI brain imaging (structural MRI, diffusion MRI,
and functional MRI) may be required. Combining structural
brain imaging and connectivity for in vivo tracking of AD-
related lesions in the asymptomatic stages may be a promising
method, facilitating an understanding of how the co-alteration
patterns found in this study were constrained by structural or
functional connectivity.

CONCLUSION

This study reported the ROI-based surface morphometry
of gray matter across HC, EMCI, LMCI, and AD groups
and identified characteristic alteration patterns in surface
morphometry during AD progression. Patients with MCI and
patients with AD showed considerable reduction in cortical
thickness and surface complexity indices. These parameters
could potentially serve as biomarkers for the prediction of
AD progression. Future longitudinal studies should determine
whether these markers are able to detect gray matter changes
with therapies aimed at slowing the disease progression. The
possibility of combining structural brain imaging and anatomical
or functional connectivity for in vivo tracking of AD-linked
lesions in the asymptomatic stages is worth further exploration.
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